
J. Fluid Mech. (2007), vol. 584, pp. 45–68. c© 2007 Cambridge University Press

doi:10.1017/S0022112007006283 Printed in the United Kingdom

45

The influence of viscosity on the frozen wave
instability: theory and experiment

EMMA TALIB, SHREYAS V. JALIKOP AND ANNE JUEL
Manchester Centre for Nonlinear Dynamics and School of Mathematics,

The University of Manchester, Manchester M13 9PL, UK,
anne.juel@manchester.ac.uk.

(Received 18 August 2006 and in revised form 26 February 2007)

We present the results of an experimental and linear stability study of the influence of
viscosity on the frozen wave (FW) instability, which arises when a vessel containing
stably stratified layers of immiscible liquids is oscillated horizontally. Our linear
stability model consists of two superposed fluid layers of arbitrary viscosities and
infinite lateral extent, subject to horizontal oscillation. The effect of the endwalls
of the experimental vessel is simulated by enforcing the conservation of horizontal
volume flux, so that the base flow consists of counterflowing layers.

We perform experiments with four pairs of fluids, keeping the viscosity of the
lower layer (ν1) constant, and increasing the viscosity of the upper layer (ν2), so that
1.02 × 102 � N1 = ν2/ν1 � 1.21 × 104. We find excellent quantitative agreement between
theory and experiment despite the simple model geometry, for both the critical onset
parameter and wavenumber of the FW. We show that the model of Lyubimov &
Cherepanov (Fluid Dyn. vol. 86, 1987, p. 849), which is valid in the limit of inviscid
fluids, consistently underestimates the instability threshold for fluids of equal viscosity,
but generally overestimates the threshold for fluids of unequal viscosity. We extend
the experimental parameter range numerically to viscosity contrasts 1 � N1 � 6 × 104

and identify four regions of N1 where qualitatively different dynamics occur, which are
reflected in the non-monotonic dependence of the most unstable wavenumber and the
critical amplitude on N1. In particular, we find that increasing the viscosity contrast
between the layers leads to destabilization over a wide range of N1, 10 � N1 � 8 × 103.
The intricate dependence of the instability on viscosity contrast is due to
considerable changes in the time-averaged perturbation vorticity distribution near the
interface.

1. Introduction
Interfacial instabilities occur in many multi-layer flows present in processes of

industrial significance, such as solvent extraction, coating and oil recovery, and may
lead to important changes in the heat and mass-transfer properties of the system
(Roberts et al. 2000). Oscillatory forcing, in particular, can have very significant and
sometimes unexpected effects on fluid interfaces. It is well known, for example, that
the vertical vibration of a stably stratified two-layer system leads to the parametric
excitation of the interface, known as the Faraday instability (Kumar & Tuckerman
1994). However, when the heavier layer is placed on top of the lighter fluid, so that
the configuration is gravitationally unstable, vertical vibration has been shown to
stabilize the resulting Rayleigh–Taylor instability (Wolf 1969, 1970).
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Under horizontal, sinusoidal oscillation, stably stratified layers of immiscible liquids
are differentially accelerated due to their density contrast. If the liquids are contained
in a vessel with endwalls, the shear flow generated by the periodic forcing consists of
counterflowing layers, since the liquids are incompressible. This configuration was first
addressed by Wolf (1969), who observed a spatially periodic waving of the interface,
steady in the frame of reference of the oscillating vessel, which is often referred to
as a ‘frozen wave’ (FW). Subsequent experimental studies have focused primarily on
the onset of the FW instability compared to the analytical stability predictions of
Lyubimov & Cherepanov (1987), valid in the limit of vanishing viscosity in both
layers. In their model, two superposed, horizontal layers of fluid of infinite lateral
extent and equal height, h = d1 = d2 (where d1 and d2 denote the heights of the
lower and upper layers respectively), are contained between horizontal, rigid plates
and subject to a horizontal vibration, a cos(ωt∗), where ω =2πf , a and f are the
amplitude and frequency of vibration respectively, and t∗ denotes time. In order to
model the stability of counterflowing layers, which occur in vessels of finite length,
they imposed the conservation of horizontal volume flux. They considered the limit of
large frequencies and vanishing amplitudes of forcing, where fast oscillatory motion
can be linearly decoupled from the mean flow, to yield, on average, a steady pressure
gradient contribution to the mean flow equations. A linear stability analysis indicates
that a perturbation of dimensionless wavenumber k to the flat interface becomes
unstable if the vibrational parameter, W =(aω)2/(gh), where g is the acceleration due
to gravity, exceeds

W >
1

2
Wγ

(
k

kγ

+
kγ

k

)
tanh k, (1.1)
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where R1 = ρ2/ρ1 and ρi (i = 1, 2) is the density of the lower and upper layers
respectively. For layer heights h >

√
3 lc, where lc =

√
γ /((ρ1 − ρ2)g) is the capillary

length and γ the interfacial tension, the instability is of finite wavelength and the
critical wavenumber kγ = h/lc is determined by the capillary length. The dispersion
relation given by equation (1.1) is analogous to that of the classical Kelvin–Helmholtz
instability, where short-and long-wavelength perturbations are suppressed by the
stabilizing effects of capillary and buoyancy forces respectively. Thus, in the absence
of viscosity, the capillary length is the natural length scale of the instability. Khenner,
Lyubimov, Belozerova & Roux (1999) extended the inviscid analysis of Lyubimov &
Cherepanov (1987) to arbitrary amplitudes and frequencies of forcing. Similarly to
Kelly (1965), who considered layers of infinite depth, they reduced the inviscid
problem to a Mathieu equation. Thus, they demonstrated the existence of a parametric
instability in addition to the Kelvin–Helmholtz instability uncovered by Lyubimov &
Cherepanov (1987).

Ivanova, Kozlov & Evesque (2001) performed experiments with a perfluorinated
liquid, FC-40, and machine oil. By varying the frequency and amplitude of forcing,
they found that the critical value of the vibrational parameter for the onset of frozen
waves, W , monotonically decreased toward a constant threshold, in good agreement
with the stability prediction of Lyubimov & Cherepanov (1987), for non-dimensional
frequencies Ω = (ω d2

2 )/ν2 > 200, where ν2 is the kinematic viscosity of the upper,
more viscous layer (machine oil). Wunenburger et al. (1999) used liquid CO2 in
equilibrium with its vapour near the critical point. They also varied the distance
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from the critical point, i.e. the density contrast and the interfacial tension, but were
unable to perform onset measurements. Their measurements of the wavelength of
the frozen wave are consistent with the results of Lyubimov & Cherepanov (1987),
although they do not reach quantitative agreement even for high frequencies of
forcing. They estimate that for high frequencies, the boundary layers are sufficiently
thin to be negligible compared to the wavelength of the disturbance, but that the
dimensionless amplitude of forcing is not vanishingly small, since a/d2 ∼ k−1

c , where kc

is the critical wavenumber. Independently, González-Viñas & Salán (1994) performed
similar experiments where they observed both frozen and travelling waves. They
suggest that the reduction of the wavelength at onset with increasing frequency of
forcing is linked to the walls of the vessel acting as wave generators. Finally, recent
measurements of the dependence of the marginal value of W on the wavenumber in
miscible liquids by Legendre, Petitjeans & Kurowski (2003) appear consistent with
the predictions of Lyubimov & Cherepanov (1987) with γ = 0, although they do not
invoke a selection mechanism for the critical wavenumber. Surprisingly, they do not
detect any influence of viscosity, using water in the bottom layer and two water–
glycerine mixtures of dynamic viscosity 0.07 kg m−1 s−1 and 1.0 kg m−1 s−1 respectively
in the upper layer.

Thus, previous experiments have focused primarily on varying the amplitude and
frequencies of forcing for a few isolated values of the viscosity ratio, N1 = ν2/ν1,
where ν1 is the kinematic viscosity of the lower layer. The disparity between existing
experimental results emphasizes the need for a comparative study between carefully
controlled experiments and a viscous stability model, in order to establish the
details of the mechanisms underlying the onset of the FW over the range of non-
dimensional frequencies, Ω , and amplitudes c = a/d2, accessible experimentally. In
the CO2 experiments, both layers have similar kinematic viscosities, whereas in the
remaining experiments the fluid layers are typically chosen to have widely differing
viscosities. In the experiments of Ivanova et al. (2001), the viscosity ratio between
the layers is N1 = 93.5. We have found in similar fluids that relatively large values of
N1 were necessary to avoid the emulsification of the oscillating interface, noted by
Ivanova et al. (2001), for values of W less than those required for the onset of the
frozen wave. Furthermore, motivated by Berman, Bradford & Lundgren’s (1978) study
of two-fluid spin-up, Shyh & Munson (1986) find surprisingly low critical values of the
amplitude and frequency for viscosity ratios as large as N1 = 104 in a related geometry
consisting of an oscillating cylinder. Careful onset measurements have also recently
been performed in this geometry for N1 = 104 by Yoshikawa (2006). We choose to
focus on uncovering the effect of viscosity on the FW instability. Specifically, we
demonstrate that altering the viscosity contrast can either lower or raise the threshold
for the onset of the FW depending on the value of N1.

The effect of viscosity on the steady Kelvin–Helmholtz instability has been addres-
sed analytically by both Lindsay (1984) and Hogan & Ayyaswamy (1985). They
find that introducing viscosity to one of the fluid layers leads to the reduction of
the critical velocity difference between the layers, by a factor which depends solely
on the density ratio between the fluids. A comparison between inviscid and viscous
two-layer stability models of the steady shear of a liquid–air interface is presented by
Barnea & Taitel (1993). Somewhat surprisingly, it indicates that the neutral stability
curves for low values of the liquid viscosity differ significantly from the inviscid result,
and that the inviscid model appears in closest agreement with the predictions for
viscous liquids. Finally, Hinch (1984) proposes a physical mechanism based on the
increase of vorticity disturbances near the interface with viscosity contrast to explain
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why two-layer Couette flow of equal-density fluids, but different viscosities, and with
no interfacial tension is always unstable to a short-wavelength instability (Hooper &
Boyd 1983).

We study the linear stability of two superposed fluid layers of arbitrary viscosity
and infinite lateral extent, subject to horizontal vibration of arbitrary amplitude
and frequency, and we enforce the global conservation of horizontal volume flux. Our
primary aim is to assess the relevance of this simple geometry to the experimental situ-
ation through direct comparison. In contrast with the Faraday configuration studied
by Kumar & Tuckerman (1994), the horizontal vibration of the vessel generates
a time-periodic basic shear flow, so that the spatial dependence of the linearized
perturbation equations cannot be solved analytically. Thus, the inclusion of viscosity
into the model requires the numerical solution of the perturbation equations. Khenner
et al. (1999) used finite differences to approximate the spatial dependence of the flow
and a Fourier expansion to resolve the time-dependence. They focused on equal-
viscosity layers, i.e. N1 = 1, but could not resolve low-viscosity flows with non-
dimensional frequencies Ω > 360. We employ a pseudo-spectral discretization scheme
to approximate the spatial dependence of the perturbed flow field. To resolve the
time-dependence of the solution, we adopt an iterative procedure based on Floquet
theory developed by Or (1997) in his study of the stability of a horizontal liquid
layer on an oscillating plane. This enables us to resolve the flow over a wide range
of non-dimensional frequencies and viscosity contrasts. In this paper, we present
results with non-dimensional frequencies, i.e. the ratio of vibrational to viscous forces,
in the lower layer of 1.6 × 102 <Ω1 = ΩN1 < 2 × 105, and in the upper layer of 8 ×
10−1 <Ω2 = Ω < 5 × 104. The viscosity ratios studied are in the range 1.0 <N1 <

6.0 × 104. The ratio of vibrational to capillary forces is consistently large with
4.0 × 103 <We < 1.0 × 105. In this limit, Talib & Juel (2006) show that each neutral
curve exhibits only one mode of instability and we refer to this paper for a detailed
parameter study of the different modes of instability encountered in this system.
Multiple parametric-resonance modes are only found to arise for lower values of We,
We � 750. Here however, we focus exclusively on the characterization of the FW in
the limit of experimentally realizable parameter values.

The experimental set-up is presented in § 2, followed by the description of the
mathematical model and numerical analysis in § 3. In § 4.1, we compare experimental
measurements of the onset of the FW and its critical wavenumber to the predictions
of our viscous model. Excellent agreement between experiments and theory indicates
that the simple model geometry is sufficient to accurately predict the onset of the
FW instability over a wide range of viscosity ratios. The predictions of Lyubimov &
Cherepanov (1987) are compared with results from our viscous model in § 4.2. The
viscous results tend toward their inviscid predictions only for very large frequencies
of forcing. Interestingly, the model of Lyubimov & Cherepanov (1987) consistently
underestimates the threshold for fluids of equal viscosity, but generally overestimates
the threshold for fluids of unequal viscosity. The effect of increasing the viscosity
contrast is investigated numerically in § 4.3. The viscosity ratio, N1, is increased
between 1 and 6 × 104, by raising the viscosity of the upper layer while keeping the
viscosity of the lower layer constant. We identify four separate regions of N1 where the
system exhibits qualitatively different dynamics, which are reflected in the variation
of the most unstable wavenumber with N1 and correspond to either the stabilization
or destabilization of the flow. The physical mechanisms responsible for the viscosity-
driven variations of the stability threshold are examined in § 4.4, by focusing on the
time-averaged perturbation streamfunctions. Conclusions are drawn in § 5.
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Figure 1. (a) Schematic side-view of the experimental apparatus. (b) Visualization set-up
(viewed from the end).

2. The experiment
A schematic diagram of the experimental apparatus is shown in figure 1(a). The

fluids were contained in a rectangular Perspex box of inner dimensions 170 mm ×
75 mm × 40 mm and 4 mm thick walls, which was sealed with a Perspex lid and fitted
with a bleed-hole to facilitate filling. The box was rigidly mounted on a linear, hori-
zontal air-bearing slide (Nelson Air), which was supplied with compressed air. The
slide was driven by a permanent-magnet shaker (LDS, V450) through a steel shaft
with a diameter of 2 mm. The shaker was powered by a linearly amplified, sinusoidal
signal from a waveform generator (Agilent, 33220A). The shaker and oscillating set-up
were mounted on separate tables, in order to isolate the liquids from the vibrational
noise of the shaker.

The quality of the sinusoidal motion was monitored by an accelerometer mounted
on the oscillating slide. The ratio of the power of the first harmonic and principal
frequency peaks of the fast-Fourier-transformed accelerometer signal was found to
decrease rapidly with increasing frequency. Thus, the harmonic content of the motion
of the slide was less than 3 %, 1.5 % and 0.1 % at frequencies of f =5Hz, f = 20 Hz
and f > 20 Hz respectively. The larger distortion of the sine wave at low frequencies
was due to the mechanical limitations of the electromagnetic shaker. When setting
up the experiment, the drive shaft was connected to the slide and carefully aligned
with the shaker, so that lateral vibrations were minimized to an undetectable level,
when monitored with a second accelerometer, mounted orthogonally to the direction
of motion.
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Lower layer ν1 (m2 s−1) ρ1 (kg m−3)

Galden HT135 1.12 × 10−6 1752

Upper layer ν2 (m2 s−1) ρ2 (kg m−3)

silicone oil (100 cS) 1.14 × 10−4 961
silicone oil (200 cS) 2.10 × 10−4 962
silicone oil (1000 cS) 1.15 × 10−3 966

silicone oil (12 500 cS) 1.35 × 10−2 975

Table 1. Physical properties of Galden HT135 and the silicone fluids at 18◦C, where νβ

denotes the kinematic viscosity and ρβ the density, in the lower layer (β = 1) and the upper
layer (β = 2) respectively. The viscosity of the 12 500 cS silicone oil was not measured in the
laboratory, and the value was taken from the data sheet at 18◦C.

Thus, the sinusoidal drive generated a linear displacement of the fluid-filled con-
tainer about its rest position of a cos(2πf t∗), where f = ω/(2π) is the frequency
of the displacement. The working frequency was in the range 10 Hz < f < 60 Hz,
and the shaker could produce amplitudes of up to a = 9 mm at low frequencies.
The dynamical displacement of the container was measured with a linearly variable
differential transducer (LVDT, Solartron, Mach 1), whose signal enabled the feedback
control of the amplitude of oscillation to better than ±0.1%.

The cell was filled with equal depths (d1 = d2 = 20 mm, where d1 and d2 are the depths
of the lower and upper layers respectively) of Galden HT135 (a perfluoropolyether
from Solvay Solexis) and silicone oil (polydimethylsiloxanes from Basildon Chemicals
Ltd). This pair of immiscible fluids was chosen for its large density contrast and low
interfacial tension. Also, the meniscus at the contact line with the Perspex vessel was
found to be minimal. Different grades of silicone oil were used with kinematic viscos-
ities between 100 and 12500 cS. The experiments were conducted in a temperature-
controlled room at 18 ± 1◦C, and the densities and dynamic viscosities of the fluids,
measured at this temperature, are given in table 1. Note that the density of silicone
oils of different viscosity remains constant to within 1.5 %. The interfacial tension
between Galden HT135 and silicone oil was measured nine times for each pair of
fluids at 18◦C, using a Du Nouy ring, and found to be equal to γ =6.8 × 10−3 Nm−1

for all of the grades of silicone oil investigated.
The FW arising in the experimental vessel was virtually independent of the trans-

verse direction, and thus two-dimensional in nature. In the case of an upper layer of
moderate viscosity, a considerable increase in the forcing parameters led to a transition
to three-dimensional waves. In this paper, however, we focus on the primary onset of
the FW.

The onset measurements were performed by setting the frequency and incrementing
the amplitude in steps of 10 µm, leaving the flow to settle at each step for approximately
30 s, (i.e. between 300 and 1800 oscillations), and for more than 1000 s with the oil of
largest viscosity of 12 500 cS (i.e. between 104 and 4 × 104 oscillations). The onset of
instability was detected using shadowgraphy. The interface was illuminated strobo-
scopically and synchronously with the drive frequency, and the deformation of the
interface was captured with a synchronized, digital CCD camera, viewing the interface
at an angle of 15◦ from the horizontal, as illustrated in figure 1(b). The minimal deflec-
tion of the interface which could be detected was of 0.04 mm. This value was estimated
using deflectometry (Fermigier et al. 1992; Burgess et al. 2001), which consisted of
imaging a fine grid through the fluid layers and measuring its distortion at onset due to
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Figure 2. Frozen wave instability of the interface between silicone oil (ρ2 = 962 kg m−3,
ν2 = 2.10 × 10−4 m2 s−1) and Galden HT135 (ρ1 = 1752 kg m−3, ν2 = 1.12 × 10−6 m2 s−1), under
horizontal vibration. The frequency of forcing is ω = 40π rad s−1 and the amplitudes, a, are
equal to: (a) 2.40 mm, (b) 2.60mm, (c) 2.80 mm, (d) 3.20mm, (e) 3.60 mm, (f ) 4.20mm. Note
that snapshots (a)–(c) and (e)–(f ) were captured at the zero-displacement position (i.e. zero
acceleration), within the oscillatory cycle. Snapshot (d), however, was taken slightly away from
this neutral position, and thus, the waves appear slanted. All the waves are stationary in the
oscillatory frame of reference.

interface deformation. The onset measurements were found to be increasingly difficult
to resolve for increasing upper-layer viscosity, due to the reduction of the deflection
of the interface following the increase of the wavelength of the instability. Thus,
particular care had to be taken with 1000 cS and 12 500 cS silicone oils. We nevertheless
estimate the uncertainty in the onset measurements to be determined by the size of
the amplitude step, and thus to be equal to ±5 µm. The camera could also be aligned
horizontally with the interface to record side-view snapshots of the growth of the FW.
In figure 2, a series of snapshots, recorded for successive values of a, demonstrate
the development of the interfacial instability for moderate values of the viscosity
ratio (N1 = 187.5). The wavelength of the FW was measured at onset by determining
the peak-to-peak distance, averaged over 5 to 8 waves within each image, and over
five images. The errors in these measurements were calculated using t-statistics, as
described by Beckwith, Marangoni & Lienhard (1993), with a confidence level of 95 %.

3. The model
3.1. Governing equations

A schematic diagram of the model is shown in figure 3. We consider two superposed
layers of incompressible and immiscible fluids bounded above and below by rigid
plates, which are oscillating sinusoidally about their rest position with velocity
aω cos(ωt∗). The denser fluid is placed in the lower layer, so that the configuration
is gravitationally stable. We choose a Cartesian coordinate system where the
x ∗-axis is parallel to the undeformed fluid interface, which lies at z∗ =0, and the
z∗-axis is parallel to the acceleration due to gravity. Each fluid layer is characterized
by a density ρβ , a kinematic viscosity, νβ and a height, dβ , where the subscripts β = 1, 2
denote the lower and upper layers respectively. The interfacial tension between the
two layers is denoted by γ .

Using d2, aω, ω−1 and µ2aω/d2, where µ2 = ρ2ν2 is the dynamic viscosity of the
upper layer, as length, velocity, time and pressure scales respectively, the dimensionless
Navier–Stokes equations governing the two-layer flow, in the frame of reference of
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Figure 3. Schematic diagram of the two-layer fluid system. The unperturbed interface
(horizontal dashed line) coincides with the x ∗-axis and the perturbed interface is shown
with a solid line. The superscript ∗ denotes dimensional variables.

the oscillating boundaries, become

Ω
∂vβ

∂t
+ AΩ(vβ · ∇)vβ = −Rβ∇pβ +

1

Nβ

∇2vβ − G0Ω

A
k̂ + Ω cos (t)î, (3.1)

∇ · vβ = 0, (3.2)

where vβ = (uβ, wβ) is the velocity in each layer. Ω = (ω d2
2 )/ν2 and A= a/d2 are the

dimensionless frequency and amplitude of oscillation respectively, Rβ = ρ2/ρβ and
Nβ = ν2/νβ , where R2 = N2 = 1, are the ratios of densities and viscosities respectively
and G0 = g/(d2ω

2) is the Froude number.
The rigid boundaries are stationary in the oscillatory frame of reference, and so the

no-slip conditions are given by

v1 = 0 at z = −d and v2 = 0 at z = 1, (3.3)

where d = d1/d2 = 1 is the ratio of layer depths. The primitive form of the interfacial
conditions, comprising the kinematic condition, the continuity of velocity, and the
balance of normal and tangential stresses respectively, at z = ξ (x, t), where ξ measures
the interfacial deformation, are

1

A

∂ξ

∂t
+ (v1 · ∇)ξ = v1 · k̂, (3.4)

v1 = v2, (3.5)

(n̂ · π1) · n̂ − (n̂ · π2) · n̂ =
Ω

We A
∇ · n̂, (3.6)

( t̂ · π1) · n̂ = ( t̂ · π2) · n̂. (3.7)

We= (ρ2 d3
2 ω2)/γ is the Weber number, πβ denotes the stress tensor in each fluid

expressed as

πβ =
1

RβNβ

[∇vβ + (∇vβ)
T ] − pβ I,
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where I is the identity matrix; n̂ is the outward, normal unit vector pointing from
fluid 1 into fluid 2 and t̂ is the tangent, unit vector on the interface given by
n̂ = {−∂ξ/∂x, 1}(1 + (∂ξ/∂x)2)−1/2, and t̂ = {1, ∂ξ/∂x}(1 + (∂ξ/∂x)2)−1/2 respectively.

In addition, following Lyubimov & Cherepanov (1987) and Khenner et al. (1999),
we enforce a zero net volume flux in the x -direction,∫ 0

−d

v1 · îdz +

∫ 1

0

v2 · î dz = 0, (3.8)

in order to model the counterflowing layers generated in vessels with endwalls.

3.2. Base-flow solution

The base flow, (v̄β, p̄β), is periodic, parallel to the horizontal boundaries and the
interface remains unperturbed. By enforcing condition (3.8), we impose a non-zero
streamwise pressure gradient,

∂p̄β

∂z
= Sβ eit ,

where S1 = S2 = S, since the normal stress condition when the interface is unperturbed
and flow is in the x-direction only, states that p̄1 = p̄2. Thus, we induce a base flow
where the two fluid layers move in opposite directions, which takes the form

ūβ(z, t) = Re

[
eit

(
Aβ emβz + i

(
SRβ

Ω
− 1

)
+ Bβ e−mβz

)]
, (3.9)

and

p̄β(x, z, t) = −G0Ω

RβA
z + Sx eit + C, (3.10)

where mβ =
√

iΩNβ with i = (−1)1/2, the integration constants Aβ , Bβ and S are
determined by imposing conditions (3.3), (3.5), (3.7) and (3.8), and C is an arbitrary
constant. The values of the constants were determined with the symbolic toolbox
in MATLAB. Base-flow solutions, plotted at t = 0 and t = π/2 for five values of the
viscosity ratio, N1, are shown in figure 4.

3.3. Perturbation equations

According to Squire’s theorem, which was extended to two layers by Hesla, Pranckh
& Preziosi (1986), it is sufficient to consider only two-dimensional disturbances to
the base flow. This choice is also justified by the experimental observation of a
two-dimensional FW. In deriving the stability equations, we express the governing
equations (3.1)–(3.2) in terms of a streamfunction, ψβ , defined by

uβ =
∂ψβ

∂z
, wβ = −∂ψβ

∂x
,

and seek a normal-mode solution (Drazin & Reid 1981) of the infinitesimally per-
turbed base flow of the form

(ψβ, pβ, ξ ) = (ψ̄β, p̄β, 0) + [φβ(z, t), Pβ(z, t), h(t)] eikx + c.c., (3.11)

where k = 2πd2/λ
∗ is the dimensionless wavenumber of the disturbance, λ∗ is the

dimensional wavelength, and c.c. denotes the complex conjugate. By substituting
(3.11) into the Navier–Stokes equations (3.1), as well as the boundary and interfacial
conditions (3.3)–(3.8), subtracting out the base state, eliminating the pressure term,
and neglecting higher-order terms, we obtain the following Orr–Sommerfeld equations
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Figure 4. Base-flow solutions calculated for parameter values associated with Galden HT135
and silicone oils of different viscosities, are shown at the time intervals, t = 0 and t = π/2,
covering a quarter of a period of oscillation. Snapshots at t = 3π/2, t = π and at regular time
intervals within the second half of the oscillation cycle can be obtained by suitable reflections
of these images. The non-dimensional parameters are R1 = 0.55, A = 0.09, G0 = 3.11 × 10−2,
We= 1.74 × 104 and d = 1: (a) N1 = 1, Ω = 5.03 × 104; (b) N1 = 1 × 102, Ω = 5.03 × 102; (c)
N1 = 1 × 103, Ω = 5.03 × 101; (d) N1 = 1 × 104, Ω = 5.03; and (e) N1 = 6 × 104, Ω = 8.38 × 10−1.
Note the thinness of the boundary layers in the lower layer where the non-dimensional
frequency is Ω1 = ΩN1 = 5.03 × 104.
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for the two-layer flow:(
Ω

∂

∂t

+ ikAΩūβ

)
(φ′′

β − k2φβ) − ikAΩū′′
βφβ +

1

Nβ

(2k2φ′′
β − k4φβ − φ′′′′

β ) = 0, (3.12)

where the prime denotes partial differentiation with respect to z. The no-slip boundary
conditions become

φ1 = 0, φ′
1 = 0 at z = −d and φ2 = 0, φ′

2 = 0 at z = 1, (3.13)

and the linearized interfacial conditions, with φ expanded in a Taylor series about
z = 0, become

1

A

∂h

∂t
+ ikū1h + ikφ1 = 0, kinematic condition, (3.14)

φ′
1 − φ′

2 + h(ū′
1 − ū′

2) = 0, continuity of velocity, (3.15)

φ1 − φ2 = 0, continuity of velocity, (3.16)

[
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∂φ′
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− ikAΩ
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ū′
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ikAΩ

R1

ū1φ
′
1 +

3k2

N1R1

φ′
1 − 1

N1R1

φ′′′
1 +

ikG0Ω

AR1

h

]

−
[
Ω

∂φ′
2

∂t
− ikAΩū′

2φ2 + ikAΩū2φ
′
2 + 3k2φ′

2 − φ′′′
2 +

ikG0Ω

A
h

]

+
ik3Ω

WeA
h = 0, normal stress balance, (3.17)

φ′′
1 + hū′′

1 + k2φ1 − N1R1(φ
′′
2 + hū′′

2 + k2φ2) = 0, tangential stress balance. (3.18)

3.4. Numerical solution

A detailed description of the numerical method can be found in Talib & Juel (2006).
Therefore we only recall essential details here. A linear transformation was used to
map the physical coordinates, z ∈ [−d, 0] in the lower layer, and z ∈ [0, 1] in the upper
layer, each onto ζ ∈ [−1, 1], so that the equations (3.12)–(3.18) could be discretized
with Gauss–Lobatto–Chebyshev collocation points, in order to maximize resolution
near the boundaries and the interface. The solution was expanded as a Lagrange
polynomial series, truncated at the Lβth term, at the collocation points ζi , so that

φβ(ζi, t) =

Lβ∑
j=0

φβj (t)Cj (ζi), i = 0, 1, . . . , Lβ, (3.19)

where φβj (t) are the unknown time-dependent amplitudes to be determined and Cj (ζi)
are the Lagrange basis functions, associated with the Gauss–Lobatto–Chebyshev
collocation points, and given by

Cj (ζi) =
(−1)j (ζ 2

i − 1)T ′
Lβ

(ζi)

c̄jL
2
β(ζi − ζj )

, i, j = 0, 1, . . . , Lβ, (3.20)

where c̄0 = c̄Lβ
= 2, c̄1 = . . .= c̄Lβ−1 = 1 and T ′

Lβ
is the first derivative of the Lβth-order

Chebyshev polynomial. The first-order derivative matrix was determined explicitly
by differentiating the Lagrange polynomials defined in equation (3.20). Higher-order
derivatives were expressed as multiple powers of the first-order derivative matrix.

Following Lanczos’ (1956) method, the governing equations, (3.12), were evaluated
at the interior collocation points and the boundary conditions (3.13)–(3.18) at the
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boundary collocation points ζ = 1 and ζ = −1, yielding a (L1 +L2 +3) × (L1 +L2 +3)
algebraic equation of the form

B
∂x
∂t

= (M0 + M(t))x, (3.21)

where x is the unknown vector

x(t) = (φ10, φ11, . . . , φ1L1
, φ20, φ21, . . . , φ2L2

, h)T (t),

M(t) = Ms sin(t) + Mc cos(t) is a 2π-periodic matrix, and B and M0 are constant-
coefficient matrices.

The time-dependent system (3.21) was solved using a fast iterative scheme based
upon the Newton–Raphson method that was developed by Or (1997) for a viscous
single layer under oscillating shear. According to Floquet theory (Nayfeh & Mook
1979), the solution of (3.21) is of the form

x(t) = Z(t) exp(σ t), (3.22)

where Z(t) is a 2π-periodic vector function and σ is the Floquet exponent. Z(t) is
expanded as a complex Fourier series, truncated at order K , so that

x(t) =

K∑
n=−K

xn eint+σ t , (3.23)

where σ = σr + iσi and xn are constant vector coefficients, and substituted into the
algebraic equation (3.21). We focus on the harmonic solution with σi = 0, which
is found experimentally. Furthermore, neither Or (1997) nor Khenner et al. (1999)
detected any subharmonic solution, due to the time-symmetry of the base flow as
discussed by Or (1997). By substitution of the solution (3.23) into equation (3.21) and
employing Or’s (1997) iterative procedure, a polynomial eigenvalue equation of order
K + 1 is obtained for x0. We evaluate the largest real eigenvalue (recall σi =0) for
which the determinant vanishes for a given set of parameter values, and compute the
marginal stability of the two-layer flow by iterating on the value of the amplitude
parameter, A, starting with A= 0.01.

All the numerical computations were carried out in MATLAB. Each linear stability
result was checked for convergence by consecutively increasing each of the Fourier
and Chebyshev modes in the lower and upper layers by two. Beyond the converged
iterate, increasing the number of Fourier and Chebyshev modes did not affect the first
four digits of the critical amplitude, Ac. The number of Chebyshev modes required
for a converged solution increased with the non-dimensional frequency in each
layer, Ω2 = Ω and Ω1 = ΩN1, because the boundary layer thicknesses are reduced.
The effect of the non-dimensional frequencies on the thickness of the boundary
layers of the base flow solution is illustrated in figure 4, where Ω2 = 3.72 and
Ω1 = 4.48 × 104. The spacing of the Gauss–Lobatto–Chebyshev collocation points
near the boundaries is O(L−2

β ), and it was found that at least one collocation point
had to lie within the boundary layer to ensure the convergence of the solution. The
results presented in this paper were calculated for 82 <L1 < 110, 30 <L2 < 90 and
K =14. The code was validated by successfully reproducing several known results for
both single-layer and two-layer oscillatory flows. The stability results obtained using
the Chebyshev collocation code were found to be in excellent agreement with those
of Khenner et al. (1999) in the limit of large viscosity (Ω < 360). We were also able
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Figure 5. Marginal stability curve in terms of the critical amplitude Ac versus the wavenumber
k/kγ , where kγ = d2/lc is the capillary wavenumber. The parameters are calculated for the
material properties of Galden HT135 and 1000 cS silicone given in table 1, a forcing frequency
of ω = 40π rad s−1 and layer depths of d1 = d2 = 2 × 10−2 m. Thus, the non-dimensional
parameters are Ω =3.72, N1 = 1.03 × 103, R1 = 0.55, G0 = 3.11 × 10−2, We= 1.74×104 and
d = 1. Am is the critical amplitude of the most unstable wavenumber, km.

to reproduce Or’s (1997) results by setting the upper-layer flow parameters to those
of air (ν2 = 15.11 × 10−6 m2 s−1 and ρ2 = 1.29 kgm−3), and omitting condition (3.8).

An example of a marginal stability curve, calculated using the properties of Galden
HT135 and 1000 cS silicone oil for ω = 40π rad s−1, is shown in figure 5. This curve
exhibits only one finite-wavelength mode and remains qualitatively similar over the
range of parameters explored in this paper. The minimum of the curve yields the
critical value that should be compared with the experimental measurements, as it
corresponds to the critical amplitude, Am, of the most unstable wavenumber, km. Note
that the broad minimum of the marginal stability curve implies that there is a range
of wavenumbers with similar stability characteristics. Given that the resolution of the
simulations is limited to four digits, we often find several neighbouring values of k cor-
responding to the value of Am, and thus estimate km to be the average of these values.

For each value of (Am, km), the perturbation streamfunction could be calculated
by computing the eigenfunction associated with the leading eigenvalue calculated at
the point of marginal stability. The perturbation streamfunction was subsequently
reconstructed in physical space and time-averaged over one period of forcing to yield
the curves presented in § 4.4.

4. Results
4.1. Comparison between experiments and linear stability calculations

We present the critical amplitude of oscillation in figure 6(a) and the critical wave-
number in figure 6(b), as a function of the dimensional forcing frequency. We choose
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Figure 6. Onset of the frozen wave instability: comparison between experimental (symbols)
and numerical (lines) results: (a) dimensional critical amplitude, am, versus frequency of forcing;
(b) dimensional most unstable wavenumber, k∗

m, versus frequency of forcing. The lower-layer
viscosity is ν1 = 1.12 × 10−6 m2 s−1 and the upper-layer viscosity is: ν2 = 1.14 × 10−4 m2 s−1

(�, −−); ν2 = 2.10 × 10−4 m2 s−1 (�, − −); ν2 = 1.15 × 10−3 m2 s−1 (�, · · ·); and ν2 = 1.35 ×
10−2 m2 s−1 (�, −·−). The other material properties are given in section 2.

to display the comparison in dimensional form, am and k∗
m versus ω, since a change

in forcing frequency ω alters not only the non-dimensional frequency Ω , but also We
and G0. In addition, the wide range of ν2 examined would make it difficult to compare
the results on the same graph, because Ω varies with ν2. The experimental data are
plotted with symbols and the numerical results with lines. The results include four
different values of the viscosity contrast, achieved by using the fluids listed in table 1.

The results shown in figure 6(a) demonstrate excellent quantitative agreement
between the experiments and the stability calculations for all the fluid parameters
investigated. Quantitative agreement is also achieved in the wavenumber comparison
shown in figure 6(b), although the experimental measurements exhibit increasing
scatter as the viscosity of the upper layer is increased. In particular, we were not
able to accurately extract an experimental critical wavenumber, when using the most
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viscous silicone oil (12 500 cS). In this case, finite-amplitude oil fingers were observed
to grow into the layer of Galden HT135 at the experimental onset value, so that
the bifurcation leading to onset could not be resolved. Our results suggest that the
range of amplitudes for which sinusoidal waves are observed decreases sharply with
the increase of ν2, and that it is less than the amplitude step of 10 µm in the case of
12 500 cS silicone oil.

The results of figure 6 indicate that our stability model, derived for oscillating,
counterflowing layers of infinite lateral extent, is sufficient to predict the experimental
onset of the FW quantitatively. The quality of the agreement implies that the endwalls
of the experimental vessel only affect the flow and the shape of the interface locally.
The experimental wavelength is of the order of 5 mm, which is small compared
with the length of the vessel of l = 170 mm. Furthermore, the instability threshold and
critical wavenumber remained unchanged to within less than 2.5 %, when experiments
were performed in a vessel which was shorter by 30 % (l =110 mm). The visualization
of the flow, using 57 µm polyamide beads in the oil, indicated the presence of regions
of recirculation within the more viscous layer, which were generated by sloshing.
These recirculations, however, appeared to be localized within approximately 2 cm of
the endwalls, and did not affect the flow in the central part of the vessel. Although
further weak recirculations may have been present, which were not detected on
the time scale of the experiments, the results of figure 6 suggest that they did not
significantly affect the onset of the FW.

It is clear from figure 6(a) that increasing the viscosity contrast between the layers
systematically lowers the stability threshold, and thus acts to destabilize the flow.
This effect is particularly pronounced for the 100 cS, 200 cS and 1000 cS silicone
fluids, whereas the gap between the curves corresponding to the 1000 cS and 12500 cS
silicone fluids is relatively smaller despite a tenfold increase in ν2. The destabilizing
effect of the viscosity contrast observed in figure 6(a) is reminiscent of the result of
the viscous, steady Kelvin–Helmholtz analysis of Barnea & Taitel (1993). Given the
excellent agreement between experiment and theory, we choose to perform a detailed
numerical investigation of the effect of viscosity contrast on the stability of the flow,
which is discussed in § 4.3.

As for the stability threshold, the most unstable wavenumber shown in figure 6(b)
exhibits a significant reduction when the viscosity contrast is increased, with the most
substantial change observed between the curves corresponding to 200 cS and 1000 cS
silicone oils, and is given in § 4.3 a more complete discussion.

4.2. Comparison with the inviscid theory of Lyubimov & Cherepanov (1987)

The results of § 4.1 clearly demonstrate that a viscous model is necessary to
quantitatively predict the experimental stability thresholds. Measurements of the onset
of the FW by Ivanova et al. (2001) with N1 = 93.5 and of its wavelength near onset
by Wunenburger et al. (1999) with N1 	 1 were found to be in qualitative agreement
with the inviscid model of Lyubimov & Cherepanov (1987), valid in the limit of
large frequencies and vanishing amplitudes of forcing. A comparison is shown in
figures 7 and 8 between the stability results of our viscous model and the inviscid
theory. The stability results are presented in figure 7 in terms of the vibrational
parameter Wm =A2

m/G0 introduced by Ivanova et al. (2001). Wm measures the forcing
acceleration relative to the acceleration due to gravity, so that the inviscid model
yields a constant threshold depicted with a solid line. The most unstable wavenumber
km is shown in figure 8 relative to the capillary wavenumber kγ . We present viscous
stability calculations for N1 = 1 in part (a) of figures 7 and 8 (ν1 = ν2 = 3 × 10−6 m2 s−1)
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Figure 7. Comparison between the viscous two-layer model and the inviscid, high-frequency
predictions of Lyubimov & Cherepanov (1987) in terms of Wm = A2

m/G0 versus Ω for different
values of the viscosity ratio: (a) N1 = 1 (ν1 = ν2 = 3 × 10−6 m2 s−1); (b) N1 = 100 (ν1 = 2 ×
10−6 m2 s−1 and ν2 = 2 × 10−4 m2 s−1). The material properties are ρ1 = 1973 kg m−3, ρ2 =
967 kg m−3, γ = 5.0 × 10−3 N m−1 and d1 = d2 = 1.3 × 10−2 m. The inviscid model systematically
underestimates the stability threshold when N1 = 1, but generally overestimates the threshold
when N1 = 100.
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Figure 8. Comparison between the viscous two-layer model and the inviscid, high-frequency
predictions of Lyubimov & Cherepanov (1987) in terms of the most unstable wavenumber
(relative to the capillary wavenumber), k/kγ , versus Ω for different values of the viscosity

ratio: (a) N1 = 1 (ν1 = ν2 = 3 × 10−6 m2 s−1); (b) N1 = 100 (ν1 = 2 × 10−6 m2 s−1 and ν2 = 2 ×
10−4 m2 s−1). The material properties are ρ1 = 1973 kgm−3, ρ2 = 967 kg m−3, γ = 5.0 ×
10−3 N m−1 and d1 = d2 = 1.3 × 10−2 m. When N1 = 1, k/kγ tends to 1 in the limit of large
Ω . When N1 = 100, however, k/kγ far exceeds 1 in the limit of large Ω .

and N1 = 100 in part (b) (ν1 = 2 × 10−6 m2 s−1 and ν2 = 2 × 10−4 m2 s−1). Note that
successive calculations were performed with increasing values of ω as in the
experiment, yielding not only increased dimensionless frequencies, Ω , but also changes
in the parameters G0 and We. For simplicity, however, we choose to show Wm and
km/kγ as functions of Ω only.

In the limit of large Ω , both sets of viscous calculations yield values of Wm that tend
toward the threshold of Lyubimov & Cherepanov (1987). The dimensional frequencies
of forcing necessary to achieve good agreement with the inviscid model when
N1 = 100 (ω � 260 rad s−1) are considerably larger than when N1 = 1 (ω � 60 rad s−1).
The scatter in the numerical data for large Ω is linked to the choice of the vibrational
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Figure 9. Experimental (open symbols) and numerical (solid symbols) onset values from
figure 6 plotted in terms of Wm, the critical dimensionless acceleration corresponding to the most
unstable wavenumber, versus Ω for silicone oil: (a) 100 cS; (b) 200 cS; (c) 1000 cS; (d) 12500 cS.
The inviscid model of Lyubimov & Cherepanov (1987) predicts Wm =0.71.

parameter Wm, which is not only proportional to a2
m but also to ω2. Hence, the small

numerical uncertainty arising from the finite four-digit resolution of the calculations
is significantly amplified at large values of Ω . Wm calculated for N1 = 1 decreases
monotonically with Ω , whereas for N1 = 100, the data exhibit a sharp decrease at
low Ω and a subsequent increase toward the threshold of Lyubimov & Cherepanov
(1987) when Ω > 200. Hence, the inviscid model systematically underestimates the
stability threshold in the case of fluids of equal viscosity, whereas the stability of two
layers of unequal viscosity is generally overestimated.

It can be seen in figure 8 that when N1 = 1, km tends toward the capillary
wavenumber, kγ = 18.3, predicted by Lyubimov & Cherepanov (1987) as Ω increases.
When N1 = 100, km also increases monotonically but grows far beyond the value of kγ .
This result is confirmed experimentally with the data presented in dimensional form in
figure 6(b). At given Ω , i.e. in dimensionless form, both experimental and numerical
results indicate that km increases with viscosity contrast. Thus, the wavenumber
appears to be strongly modified by the presence of viscous forces, when there is a
significant viscosity contrast between the layers.

A comparison between experimental and numerical results expressed in terms of Wm

rather than critical amplitude is a more severe test of the model than the comparison
presented in figure 6, and is shown in figure 9 for all four sets of data. The theory
of Lyubimov & Cherepanov (1987) predicts Wm =0.71 for the fluids used in the
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Figure 10. Comparison between the experimental measurements of Ivanova et al. (2001) and
the results presented in figures 9(a) and 7(b). The onset curves are shown in terms Wm/Wγ

versus Ω , where Wγ is the critical value predicted by Lyubimov & Cherepanov (1987). The
results of Ivanova et al. (2001) are for R1 = 0.47, N1 = 93.5, kγ = 30 ± 2 and Wγ = 0.42, the
results of figure 9(a) are for R1 = 0.55, N1 = 102, kγ = 21.3 and Wγ = 0.71 and the results of
figure 7(b) are for R1 = 0.49, N1 = 100, kγ = 18.3 and Wγ = 0.72. The data sets are in good
qualitative agreement, and the quantitative differences are due to small differences in the fluid
parameters. Note that the values of Ω for which the curves from figures 9(a) and 7(b) reach
their minima are different since the upper- and lower-layer viscosities in these two cases differ
by approximately a factor of two.

experiment, which is significantly larger than the minimum experimental values of
0.58, 0.44, 0.28 and 0.19 corresponding to 100 cS, 200 cS, 1000 cS and 12 500 cS
silicone oils respectively. The agreement is consistently very good at low frequencies
particularly in figures 9(a) and 9(b), for 100 cS and 200 cS silicone fluids respectively.
The error bars on the graphs correspond to the ±5 µm uncertainty in the dimensional
threshold amplitude, as discussed in § 2. Some divergence is observed as Ω increases,
owing to the amplification of experimental uncertainties when expressing the results
as Wm = A2

m/G0 = a2
mω2/(g d2). Note that the qualitative form of the Wm dependence

on Ω is different in figure 9(c) compared with figures 9(a), 9(b) and 9(d), but that we
consistently find qualitative agreement between experiment and theory. The change
in the qualitative form of the Ω dependence of Wm highlights the complex effect of
viscosity contrast on the stability of the two-layer flow, which is further investigated
in § 4.3.

Finally, note that our results are consistent with the experimental measurements of
Ivanova et al. (2001), shown in figure 10. Their measurements, taken for R1 = 0.47,
N1 = 93.5, kγ =30 ± 2 and Wγ = 0.42, are compared with the experimental and
numerical results of figure 9(a) (R1 = 0.55, N1 = 102, kγ = 21.3 and Wγ = 0.71) and the
numerical results of figure 7(b) (R1 = 0.49, N1 = 100, kγ =18.3 and Wγ = 0.72), which
are for parameter values of the same order. All the sets of data are in good agreement
and the small quantitative discrepancies are due to the slightly different choices of
fluid parameters.
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Figure 11. Influence of viscosity contrast on the stability of the oscillating, two-layer flow:
(a) critical amplitude of the most unstable wavenumber versus N1; (b) most unstable wave-
number versus N1. The calculations were performed with d1 = d2 = 2 × 10−2 m, ω = 40π rad s−1,
ρ1 = 1752 kg m−3, ρ2 = 966 kgm−3, γ = 7 × 10−3 N m−1, ν1 = 1 × 10−6 m2 s−1 and 1 × 10−6 �
ν2 � 6 × 10−2 m2 s−1. Vertical dotted lines separate the graphs into four distinct regions
of qualitatively different dependence on N1. The computational values presented in the
comparison between experiment and theory in figure 6 are marked with open squares on
the graph. The small discrepancy with the present calculations is due to the slightly different
value of ν1 = 1.12 × 10−6 m2 s−1.

4.3. Destabilizing influence of viscosity

The results of a numerical investigation of the dependence of the critical amplitude
of forcing and the most unstable wavenumber on the viscosity contrast are shown
in figures 11(a) and 11(b). The calculations were performed for parameter values
corresponding to Galden HT135 in the lower layer, with ν1 = 1 × 10−6 m2 s−1, and
silicone oil in the upper layer. The depths of the layers were set to d1 = d2 = 2 × 10−2 m
and the forcing frequency was ω =40π rad s−1. The viscosity of the upper layer was
increased from ν2 = ν1 up to ν2 = 6 × 10−2 m2 s−1. Thus, in this case, the increase in
viscosity contrast is measured in terms of an increase in N1 from 1 to 6 × 104. The
effect of raising the viscosity of the upper layer for fixed frequency ω is to decrease
the dimensionless frequency of the upper layer, Ω2 =Ω , while increasing N1 so that the
dimensionless frequency of the lower layer, Ω1 = Ω2 N1 remains constant. Calculations
have shown that increasing N1 while keeping Ω constant systematically destabilizes
the two-layer flow, whereas reducing Ω while keeping N1 constant always raises the
stability threshold.

Results shown in figures 11(a) and 11(b) indicate that when N1 is raised and Ω

lowered by increasing the value of ν2, both the critical amplitude Am and the most
unstable wavenumber km exhibit a non-monotonic dependence on N1. Four regions of
qualitatively different behaviour can be isolated over the range of viscosity contrasts
investigated, and their approximate boundaries are highlighted in the graphs with
vertical dotted lines. For 1 � N1 � 10, raising N1 leads to a slight stabilization,
whereas for 10 � N1 � 150 and 150 � N1 � 8000, significant destabilization occurs.
We separate the interval of N1 where destabilization occurs into two regions, because
the most unstable wavenumber increases sharply for 10 � N1 � 150, but decreases for
150 � N1 � 8000. Furthermore it may be noted in figure 11(a), that there is a transition
in the rate of change of Am as a function of N1 between the intervals 10 � N1 � 150
and 150 � N1 � 8000.

The results plotted in figure 11(a) indicate that the effect of raising the viscosity
contrast is significant. Indeed, the value of Am at N1 = 8000 is approximately half
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that of Am at N1 = 10. For N1 > 8000, Am increases with N1, whereas km saturates at a
value of k∞ = 20.15. The value of k∞ is close to the value of the capillary wavenumber,
kγ = 21.3, also predicted by Lyubimov & Cherepanov (1987) in the limit of inviscid
fluids. Thus, it appears that the most unstable wavenumber is also selected by capillary
effects in the limit of large upper-layer viscosities.

Note that the computational results presented in comparison with experimental
measurements in figure 6, which are marked with open squares on the graphs in
figure 11, are consistent with the present calculations. The minor discrepancy between
the two sets of results is due to the slightly different value of ν1 = 1.12 × 10−6 m2 s−1

employed in the comparison with experiments.
Calculations have also been performed with ν2 = 1 × 10−6 m2 s−1, and raising the

viscosity of the lower layer. The results are qualitatively similar to those shown in
figures 11(a) and 11(b), although restabilization occurs for significantly lower values
of N1, N1 � 2000. This quantitative difference is due to the fact that the layers have
different densities, and are thus subject to inertial forces of different magnitude, which
are balanced by the increasing viscous forces. Indeed the basic flow is parameterized
by both N1 and R1, as well as their product.

The dependence of the instability on viscosity contrast was also investigated for
R1 = 0.9 and R1 = 0.1. In both cases, a non-monotonic dependence of the critical
amplitude and most unstable wavenumber was found which is qualitatively similar
to the case with R1 = 0.55 detailed in this paper.

Finally, if the viscosity of both fluid layers is raised so that N1 remains constant,
i.e. both Ω1 and Ω2 decrease, calculations show that the instability threshold
systematically increases, so that the system is stabilized.

4.4. Instability mechanism

In the limit of inviscid fluids, the interface becomes unstable to frozen waves through
a Kelvin–Helmholtz mechanism (Lyubimov & Cherepanov 1987). The frozen wave,
however, is a short-wavelength instability, so that viscosity may dominate inertia in
some parameter regimes. Hinch (1984) proposes a destabilizing mechanism driven by
viscosity contrast for the short-wavelength interfacial instability in two-layer Couette
flow uncovered by Hooper & Boyd (1983). When the interface is displaced due to a
small perturbation, velocity adjustments take place in both layers in order to satisfy
the balance of stresses at the interface. This velocity perturbation takes the form
of counter-rotating vortices located above and below the peaks of the perturbed
interface. When the upper fluid is much more viscous than the lower one, most of
the accommodation is carried by the lower fluid, and the difference in magnitude
of the disturbances increases with the viscosity contrast. A small contribution of
inertia is required for the interface to destabilize within a linear theory. It acts by
advecting the vorticity distribution on both sides of the interface to create out-of-
phase components. Since the counter-rotating vortices on either side of the interface
are of different magnitude, the velocity disturbances do not cancel and, thus, their
net effect is to increasingly deform the interface the larger the viscosity contrast.

The non-monotonic dependence of the onset of the frozen wave cannot be correlated
with simple features of the base-flow profiles shown in figure 4. In these, the thickness
of the interfacial boundary layer remains approximately constant in the lower layer
since Ω1 = ΩN1 is constant, while it increases monotonically in the upper layer
with the reduction in Ω2 = Ω . In order to gain an understanding of the effect of
viscosity contrast on the frozen wave instability, we examine a series of time-averaged
perturbation streamfunctions calculated for the same parameter values as the data
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Figure 12. Time-averaged perturbation streamfunction in the vicinity of the interface plotted
for −0.04 � z � 0.04: (a) N1 = 1, 2, 5 and 10; (b) N1 = 30, 65, 100 and 200; (c) N1 = 200,
1000, 5000 and 8000; (d) N1 = 8000, 12 000 and 60 000. The calculations were performed with
d1 = d2 = 2 × 10−2 m, ω = 40π rad s−1, ρ1 = 1752 kgm−3, ρ2 = 966 kgm−3, γ = 7 × 10−3 N m−1,
ν1 = 1 × 10−6 m2 s−1 and 1 × 10−6 � ν2 � 6 × 10−2 m2 s−1.

shown in figure 11, with N1 between 1 and 6 × 104. They are plotted in figure 12
for −0.04 <z < 0.04, because the instability mode is interfacial, and the perturbation
streamfunction is close to zero outside this region. Figures 12(a)–12(d) contain data
representative of the four regions of viscosity contrast identified in § 4.3 respectively.
The peaks in the perturbation streamfunctions indicate the presence of vortices, which
are counter-rotating if the peaks are of opposite sign.

For N1 = 1 (see figure 12a), the perturbation streamfunction indicates the presence
of two counter-rotating vortices in each layer. The vortices in one layer are not mirror
images of those in the other layer, despite the layers having equal viscosity. This is
the consequence of the presence of a density contrast, which also drives a flow. An
evolution from two vortices to one vortex in the upper layer between N1 = 1 and
N1 > 1 can be observed in figure 12(a). The streamfunction peak in the upper layer
broadens as N1 increases, thus reducing the concentration of vorticity at the interface.
Meanwhile, the weaker vortex closest to the interface in the lower layer maintains its
magnitude and proximity, and thus the interface is less unstable with increasing N1,
as shown by the slight increase of Am observed in figure 11(a) for 1 � N1 � 10. The
broadening of the upper-layer peak may additionally be linked to the slight reduction
in wavenumber over this range of viscosity ratios shown in figure 11(b). Note also that
the amplitudes of the peaks of the streamfunction are much smaller in figure 12(a)
than for the flows of higher viscosity contrast shown in figures 12(b)–12(d). Thus,
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in figure 12(a), the small viscosity contrast leads to minimal velocity adjustments, so
that the instability is dominantly driven by the inviscid mechanism.

In figure 12(b), the emergence of two peaks of opposite sign can be observed in
the lower layer, corresponding to counter-rotating vortices, which grow in amplitude
with N1. Similarly, the streamfunction peak in the upper layer also grows with N1.
The dynamics appear dominated by the lower-layer peak closest to the interface
which both grows and narrows, reflecting the concentration of vorticity just below
the interface. The difference in magnitude between the disturbances on either side
of the interface increases significantly with N1 for 10 � N1 � 150, leading to the
considerable decrease in Am shown in figure 11(a). The sharp rise in wavenumber
observed in figure 11(b) for this range of N1 is consistent with the thinning of the
boundary layer near the interface in the lower layer.

It can be seen in figure 12(c) that the interfacial peak in the streamfunction in
the lower layer has reached a maximum, and that the changes in the perturbation
streamfunction occur dominantly within the two positive peaks located in the upper
and lower layer respectively. The perturbation in the upper layer monotonically
decreases with increasing N1, whereas the positive peak in the lower layer broadens and
grows. Thus, it appears that the observed decrease in wavenumber for 150 � N1 � 8000
is associated with the evolution of the lower vortex in the lower layer. The broadening
of this vortex leads to the increasing localization of the saturated lower-layer vortex
at the interface, and thus promotes further destabilization as observed in figure 11(a).
Note that the streamfunction plots presented in figures 12(b) and 12(c), where Am

decreases with N1, both exhibit features that are consistent with the destabilization
mechanism driven by viscosity contrast proposed by Hinch (1984). In particular, most
of the velocity adjustments occur in the less-viscous lower layer. Here, however, the
interface is already Kelvin–Helmholtz unstable and the effect of the viscosity contrast
is additional.

Finally, in figure 12(d), as N1 increases, the perturbation in the upper layer tends
to zero due to the increase in the viscosity of the upper layer, which leads to an
overall reduction in both the base flow (see figures 4d and 4e), and the perturbation
streamfunction. Thus, the instability threshold increases for N1 > 8000. The widths
of the perturbation streamfunction peaks in the lower layer remain approximately
constant with increasing N1, and the wavenumber for N1 > 8000 is no longer governed
by viscous effects, but reaches a value close to that of the capillary wavenumber, as
discussed in § 4.3.

5. Conclusion
The results of an experimental and numerical study of the onset of instability in

stably stratified layers of immiscible liquids subject to horizontal sinusoidal vibration
have been presented. We have demonstrated that a linear stability model derived for
two superposed, viscous fluid layers of infinite lateral extent with zero horizontal
volume flux is sufficient to accurately predict the critical onset parameter and
wavenumber of the FW instability observed experimentally over a wide range of
viscosity contrasts.

Although accurate in the limit of very large frequencies, we find that the model of
Lyubimov & Cherepanov (1987) consistently underestimates the threshold for fluids
of equal viscosities, but generally overestimates the threshold for fluids of unequal
viscosities.
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The influence of viscosity on the frozen wave has been demonstrated experimentally
to be non-negligible with the systematic decrease of the stability threshold for
increasing viscosity ratios of 1.02 × 102 � N1 = ν2/ν1 � 1.21 × 104. Numerically, we
have extended the parameter range available experimentally to 1 � N1 � 6 × 104 and
identified four regions of N1 where qualitatively different dynamics occur, which
are reflected in the dependence of the most unstable wavenumber on N1. Regions
of stabilization with increasing N1 are for 1 � N1 � 10 and 8 × 103 � N1 � 6 × 104,
whereas the value of the critical amplitude of the most unstable wavenumber is
reduced by half between N1 = 10 and N1 = 8 × 103. We find that the mechanism
leading to the destabilization of the flow for 10 � N1 � 8 × 103 is closely linked to that
proposed by Hinch (1984) to explain the occurrence of a short-wavelength instability
in two-layer Couette flow with equal fluid densities and zero interfacial tension.

The focus of this paper has been the onset of the frozen wave. Preliminary
experiments, however, suggest a further significant influence of the viscosity contrast
on the nature of the bifurcation leading to frozen waves, as well as on the growth of
these waves. These topics are currently under investigation.

The authors wish to thank Dr W.Y. Jiang for his support with the numerical
method and Dr A. L. Hazel and Professor T. Mullin for many useful discussions.
The invaluable help of E. Davenport in performing the measurements of the
interfacial tension is gratefully acknowledged. This work was funded by an EPSRC
project studentship (E. T.), an Overseas Research Fellowship (S. V. J.) and an EPSRC
Advanced Research Fellowship (A. J.).

REFERENCES

Barnea, D. & Taitel, Y. 1993 Kelvin–Helmholtz stability criteria for stratified flow: viscous versus
non-viscous (inviscid) approaches. Intl J. Multiphase Flow 19, 639–649.

Beckwith, T. G., Marangoni, R. D. & Lienhard, V. J. H. 1993 Mechanical Measurements , 5th edn.
Prentice Hall.

Berman, A. S., Bradford, J. & Lundgren, T. S. 1978 Two-fluid spin-up in a centrifuge. J. Fluid
Mech. 84, 411–431.

Burgess, J. M., Juel, A., McCormick, W. D., Swift, J. B. & Swinney, H. L. 2001 Suppression of
dripping from a ceiling. Phys. Rev. Lett. 86, 1203–1206.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability . Cambridge University Press.

Fermigier, M., Limat, L., Westfreid, J. E., Boudinet, P. & Quilliet, C. 1992 Two-dimensional
patterns in Rayleigh–Taylor instability of a thin layer. J. Fluid Mech. 236, 349–383.
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